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Thermodynamics

1 Introduction

A macroscopic system has many degrees of freedom, only a few of which are measurable. Thermodynamics

thus concerns itself with the relation between small number of variables which are sufficient to describe the

bulk behavior of the system in question. In the case of a gas or liquid the appropriate variables are the

pressure P, volume V, and temperature T. In the case of a magnetic solid the appropriate variables are the

magnetic field H, the magnetization M, and the temperature T. In more complicated situations, such as when

a liquid is in contact with its vapor, additional variables may be needed: such as the volume of both liquid

and gas VL, Va, the interfacial area A, and surface tension σ. If the thermodynamic variables are independent

of time, the system is said to be in a steady state.

If the thermodynamic variables are independent of time, the system is said to be in a steady state. If,

moreover, there are no macroscopic currents in the system, such as a flow of heat or particles through the ma-

terial, the system is in equilibrium. Any quantity which, in equilibrium, depends only on the thermodynamic

variables, rather than on the history of the sample, is called a state function.

In subsequent sections we shall meet a number of such quantities. For a large system, the state variables

can normally be taken to be either extensive (i.e., proportional to the size of the system) or intensive (i.e.,

independent of system size). Examples of extensive variables are the internal energy, the entropy, and the

mass of the different constituents or their number, while the pressure, the temperature, and the chemical

potentials are intensive.

The postulate that quantities like the internal energy and entropy are extensive and independent of shape

is equivalent to an assumption of additivity or of the existence of the thermodynamic limit. In the process

of taking the thermodynamic limit, we let the size of the system become infinitely large, with the densities

(of mass, energy, magnetic moment, polarization, etc.) remaining constant.

In equilibrium the state variables are not all independent and are connected by equations of state. The

role of statistical mechanics is the derivation, from microscopic interactions, of such equations of state. Simple

examples are the ideal gas law,

PV −NkBT = 0

where N is the number of molecules in the system and kB is Boltzmann’s constant; the van der Waals

equation,

(
p+

aN2

V 2

)
(V −Nb)−NkBT = 0

where a, b are constants; the virial equation of state

P − NkBT

V

[
1 +

NB2(T )

V
+
N2B3(T )

V 2
+ . . .

]
= 0
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where the functions B2(T ), B3(T ) are called virial coefficients; and in the case of a paramagnet, the Curie

law,

M − CH

T
= 0

where C is a constant called the Curie constant. These equations of states are approximations, and we

shall use them primarily to illustrate various principles. The virial equation of state is, in principle, exact,

but calculation of more than a few of the virial coefficients is very difficult.

2 Law’s of Thermodynamics

2.1 Zeroth Law

The zeroth law can be thought of as the statement that matter in equilibrium can be assigned values for the

temperature, pressure and chemical potentials, which in principle can be measured. Formally the law can be

stated as:

If system A is in equilibrium with systems B and C then B is

in equilibrium with C.

The zeroth law allows us to introduce universal scales for temperature, pressure etc.

Another way of looking at the zeroth law is through an analogy with me- chanics. In equilibrium the forces

are balanced. This implies that the intensive variables are constant throughout the system. In particular:

T = const. → Thermal equilibrium

P = const. → Mechanical equilibrium

µ = const. → Chemical equilibrium

The zeroth law has a fairly straightforward statistical interpretation and this will allow us to make

contact between the thermodynamic and statistical description. You will understand this better when you

study Statistical mechanics.

2.2 First Law

The first law of thermodynamics restates the law of conservation of energy. However, it also partitions the

change in energy of a system into two pieces, heat and work:

dE = d̄Q− d̄W

dE is the change in internal energy of the system, d̄Q the amount of heat added to the system, and d̄W

the amount of work done by the system during an infinitesimal process
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Aside from the partitioning of the energy into two parts, the formula distinguishes between the infinites-

imals dE, and, d̄Q, d̄W . The difference between the two measurable quantities d̄Q and d̄W is found to be

the same for any process in which the system evolves between two given states, independently of the path.

This indicates that dE is an exact differential or, equivalently, that the internal energy is a state function.

The same is not true of the differentials d̄Q and d̄W . hence the difference in notation.

Consider a system whose state can be specified by the values of a set of state variables xj (e.g., the volume,

the number of moles of the different constituents, the magnetization, the electric polarization, etc.) and the

temperature. As mentioned earlier, thermodynamics exploits an analogy with mechanics and we write, for

the work done during an infinitesimal process,

d̄W = −
∑
j

Xjdxj

where the X ′js can be thought of as generalized forces and the x′js as generalized displacements.

Before going on to discuss the second law, we pause to introduce some terminology. A thermodynamic

transformation or process is any change in the state variables of the system. A spontaneous process is one

that takes place without any change in the external constraints on the system, and is due simply to the

internal dynamics. An adiabatic process is one in which no heat is exchanged between the system and its

surroundings. A process is isothermal if the temperature is held fixed, isobaric if the pressure is fixed, isochoric

if the density is constant, and quasistatic if the process is infinitely slow. A reversible process is by nature

quasistatic and follows a path in thermodynamic space which can be exactly reversed. If this is not possible,

the process is irreversible. An example of a reversible process is the slow adiabatic expansion of a gas against

a piston on which a force is exerted externally. This force is infinitesimally less than PA, where P is the

pressure of the gas and A the area of the piston. An example of an irreversible process is the free adiabatic

expansion of a gas into a vacuum. In this case the initial state of the gas can be recovered if one compresses

it and removes excess heat. This is, however, not the same thermodynamic path.

2.3 Second Law

The second law of thermodynamics introduces the entropy S as an extensive state variable and states that

for an infinitesimal reversible process at temperature T, the heat given to the system is

d̄ Q|rev = TdS

while for an irreversible process

d̄ Q|irrev ≤ TdS

If we are only interested in thermodynamic equilibrium states we can use d̄ Q|rev = TdS and treat the

entropy S as the generalized displacement which is coupled to the ’force’ T. The above formulation of the

second law is due to Gibbs

We present next two equivalent statements of the second law of thermodynamics. The Kelvin version is:
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There exists no thermodynamic process whose sole effect is to ex- tract a quantity of heat

from a system and to convert it entirely to work.

The equivalent statement of Clausius is:

No process exists in which the sole effect is that heat flows from a reservoir at a given

temperature to a reservoir at a higher temperature.

A corollary of these statements is that the most efficient engine operating between two reservoirs at

temperatures T1 and T2 is the Carnot engine. The Carnot engine is an idealized engine in which all the

steps are reversible. We show the Carnot cycle for an ideal gas working substance in the next Figure

Figure 1: Carnot cycle for an ideal gas

In step AB heat Q1 is absorbed by the gas, which expands isothermally and does work in the process.

The next step, (BC, is adiabatic and further work is done. In step CD heat (−Q2) is given off to the low-

temperature reservoir and work is done on the gas. Step DA returns the working substance adiabatically to

its original state.

The efficiency, η, of the engine is defined to be the ratio of the total work done in one cycle to the heat

absorbed from the high-temperature reservoir:

η =
W

Q1
=
Q1 +Q2

Q1

In this equation we have followed the convention of the first law that heat transfer is positive if added

to the working system. Suppose now that a second more efficient engine operates between the same two

temperatures. We can use this engine to drive the Carnot engine backwards since it is reversible, Q1, Q2, and

W will simply change sign and η will remain the same.

In the next figure .2(a) the Carnot engine is denoted by C, the other hypothetical super-engine, with

efficiency ηS > ηC is denoted by S. we use all the work done by engine S to drive engine C . Let the heat

absorbed from the reservoirs be Q1C , Q1S , Q2S , Q2S . By assumption we have
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ηS =
W

Q1S
>
−W
Q1C

= ηC

Figure 2: (a) Carnot engine (C) driven in reverse by an irreversible engine (S). (b) Arbitrary reversible process

covered by infinitesimal Carnot cycles.

The inequality implies that |Q1C | > Q1S and the net effect of the entire process is to transfer heat from

the low-temperature reservoir to the high- temperature reservoir. This violates the Clausius statement of the

second law. Similarly, if we take only part of the work output of engine S, and adjust it so that there is no

net heat transfer to the low-temperature reservoir, a contradiction of the Kelvin statement of the second law

results. We conclude that no engine operating between two reservoirs at fixed temperatures is more efficient

than a Carnot engine. Equivalently, all reversible engines operating between fixed temperatures have the

same efficiency and are Carnot engines.

The result that all Carnot engines operating between two temperatures have the same efficiency can be

used to define a temperature scale. One possible definition is

T2
T1

= 1− ηC (T1, T2)

where ηC (T1, T2) is the Carnot efficiency. Using an ideal gas a working substance, one can easily show

that this temperature scale is identical with the ideal gas (or absolute) temperature scale. Substituting for η

in equation η = W
Q1

= Q1+Q2

Q1
we have, for a Carnot cycle,

Q1

T1
+
Q2

T2
= 0

With this equation we are in a position to define the entropy. Consider an arbitrary reversible cyclic

process such as the one drawn in (b) of the previous figure. We can cover the region of the P − V plane,

enclosed by the reversible cycle R with a set of Carnot cycles operating between temperatures arbitrarily

close to each other. For each Carnot cycle we have,
∑
i

Qi
Ti

= 0

As the number of Carnot cycles goes to infinity, the integral of d̄Q/T over the uncompensated segments

of these cycles approaches

∫
R

d̄Q

T
= 0

Thus the expression d̄Q/T is an exact differential for reversible processes and we define the state function,
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whose differential it is, to be the entropy S. For reversible processes the first law can therefore be written in

the form

dE = TdS − dW = TdS +
∑
j

Xjdxj

The fact that the Carnot cycle is the most efficient cycle between two temperatures allows us to ob-

tain an inequality for arbitrary processes. Consider a possibly irreversible cycle between two reservoirs at

temperatures T1 and T2.

Q1 +Q2

Q1
≤ Q1C +Q2C

Q1C
= ηC

This implies that Q2/Q1 ≤ −T2/T1 and

Q1

T1
+
Q2

T2
≤ 0

Generalizing to an arbitrary process, we obtain

∮
d̄Q

T
≤ 0

where the equality holds for reversible processes. Since the entropy is a state function,
∮
dS = 0 for any

reversible closed cycle. We can imagine an arbitrary process combined with a reversible process to form a

cycle and we therefore obtain for an arbitrary infinitesimal process T∆S ≥ ∆Q

Combining this with the first law we have, for arbitrary infinitesimal processes,

T∆S ≥ ∆E + ∆W

where, once again, the equality holds for reversible processes.

A further consequence of the foregoing discussion is that the entropy of an isolated system cannot decrease

in any spontaneous process. Imagine a spontaneous process in which the system evolves from point A to point

B in the next figure in the thermodynamic space. (Note that the irreversible path cannot be represented as

a curve in the P − T plane. The dotted line represents a reversible path connecting the same endpoints.)

Since the system is isolated ∆Q = 0 and

∫ B

A
dS ≥

∫ B

A

dQ

T
= 0 =⇒ S(B)− S(A) ≥ 0

Since spontaneous processes tend to drive a system toward equilibrium, we con- clude that the equilibrium

state of an isolated system is the state of maximum entropy.
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Figure 3: Thermodynamic Path

3 Thermodynamic Potentials

The term thermodynamic potential derives from an analogy with mechanical potential energy. In certain

circumstances the work obtainable from a macroscopic system is related to the change in the appropriately

defined thermodynamic potential. The simplest example is the internal energy E(S, V ) for a PV T system.

The second law for reversible processes reads

dE = TdS − PdV = d̄Q− d̄W

In a reversible adiabatic transformation the decrease in internal energy is equal to the amount of work

done by the expanding system. If the transformation is adiabatic but not reversible, d̄Q = 0 and the first

law yields

∆E = −(∆W )irrev

with the same change in E as in a reversible transformation connecting the same endpoints in the ther-

modynamic space. However, the change in entropy is not necessarily zero and must be calculated along a

reversible path:

∆E = (∆Q)rev − (∆W )rev

Subtracting and using (d̄Q)rev = TdS, we find that

(∆W )rev − (∆W )irrev =

∫
TdS ≥ 0

Thus the decrease in internal energy is equal to the maximum amount of work obtainable through an

adiabatic process, and this maximum is achieved if the process is reversible.

We now generalize the formulation to allow other forms of work, as well as the exchange of particles

between the system under consideration and its surroundings. This more general internal energy is a function

of the entropy, the extensive generalized displacements, and the number of particles of each species: E =

E (S, {xi} , {Nj}) with a differential (for reversible processes)
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dE = TdS +
∑
i

Xidxi +
∑
j

µjdNj

Here Nj is the number of molecules of type j and the chemical potential µj is defined by the previous

equation. We are now in a position to introduce a number of other useful thermodynamic potentials. The

Helmholtz free energy A, is related to the internal energy through a Legendre transformation:

A = E − TS

The quantity A is a state function with differential

dA = dE − TdS − SdT

= −SdT +
∑
i

Xidxi +
∑
j

µjdNj

As in the case of the internal energy, the change in Hehnholtz free energy may be related to the amount

of work obtainable from the system. In a general infinitesimal process

dA = dE − d(TS)

= dQ− TdS − SdT − dW
= −pdV − SdT

Thus

dW = (dQ− TdS)− SdT − dA

In a reversible transformation d̄Q = TdS. If the process is isothermal as well as reversible we have

d̄W = −dA and the Helmholtz free energy plays the role of a potential energy for reversible isothermal

processes. If the process in question is isothermal but not reversible, we have d̄Q− TdS ≤ 0. and

(dW )irrev = dQ− TdS − dA ≤ −dA

which shows that −dA is the maximum amount of work that can be extracted, at constant tempera-

ture, from the system. We also see, from the previous equation, that if the temperature and generalized

displacements are fixed (T, {xi} , {Nj}) is the state of minimum Helmholtz free energy.

Another thermodynamic potential which is often useful is the Gibbs free energy G. For a PV T system

we write G = A+ PV

This function is again a state function with a differential

dG = dA+ PdV + V dP = −SdT + V dP
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In a general process

dG = dE − d(TS) + d(PV )

= (d̄Q− TdS)− (d̄W − PdV ) + V dP − SdT

We see that the relations

d̄W − PdV = 0

d̄Q− TdS ≤ 0

imply that the Gibbs potential can only decrease in a spontaneous process at fixed T and P.

In many applications one considers processes which take place at ambient pressure. In such a process there

may be volume change (e.g, due to release of gases in a chemical reaction). The PdV work then represents

work against the environment and is commonly not considered to be available work. We write

d̄W =

∫
PdV +Wother

where Wother could represent electric energy in a fuel cell. It is then easy to show that −∆G is the

maximum amount of other work that can be extracted at fixed T. The maximum occurs when the process is

reversible.

One further potential that is very useful in statistical physics is the grand potential ΩG(T, V, {µ}). This

potential is obtained from the internal energy through the transformation

ΩG(T, V, {µ}) = E − TS −
∑
i

Niµi

And has the differentials

dΩG = −SdT − PdV −
∑
i

Nidµi

The grand potential is necessary for the description of open systems (systems that can exchange particles

with their surroundings).

4 Maxwell’s Relations

It follows from the differential form

dA = dE − TdS − SdT

= −SdT +
∑
i

Xidxi +
∑
j

µjdNj

for a single-component PV T system that
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(
∂A
∂T

)
N,V

= −S(
∂A
∂V

)
T,N

= −P(
∂A
∂N

)
T,V

= µ

It is a well-known result from the theory of partial differentiation that higher order derivatives are inde-

pendent of the order in which the differentiation is carried out; that is, if φ is a single-valued function of the

independent variables xl, x2, ..., xn, then

∂

∂xi

(
∂φ

∂xj

)
=

∂

∂xj

(
∂φ

∂xi

)

By applying this result to the previous equation we immediately obtain the Maxwell’s relations:

(
∂S
∂V

)
T,N

=
(
∂P
∂T

)
V,N(

∂S
∂N

)
V,T

= −
(
∂µ
∂T

)
V,N(

∂P
∂N

)
V,T

= −
(
∂µ
∂V

)
T,N

Similarly, in the case of the Gibbs potential we find from

dG = dA+ PdV + V dP + µdN = −SdT + V dP + µdN

(
∂G
∂T

)
N,P

= −S(
∂G
∂P

)
T,N

= V(
∂G
∂N

)
T,P

= µ

from which we have the additional Maxwell relations:

(
∂S

∂P

)
T,N

= −
(
∂V

∂T

)
P,N(

∂V

∂N

)
P,T

=

(
∂µ

∂P

)
T,N(

∂S

∂N

)
P,T

= −
(
∂µ

∂T

)
P,N

You already know the internal energy equation

dE = TdS − PdV + µdN

From here you can get (
∂E
∂S

)
N,V

= T(
∂E
∂V

)
S,N

= −P(
∂E
∂N

)
S,V

= µ
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Hence you get

(
∂T

∂V

)
S,N

= −
(
∂P

∂S

)
V,N(

∂T

∂N

)
S,V

=

(
∂µ

∂S

)
V,N(

∂P

∂N

)
S,V

= −
(
∂µ

∂V

)
S,N

You can get another sets of equations from enthalpy relation

dH = TdS + V dP + µdN

From here you can get

(
∂H
∂S

)
P,N

= T(
∂H
∂P

)
S,N

= V(
∂H
∂N

)
S,P

= µ

Hence you get

(
∂T

∂P

)
S,N

=

(
∂V

∂S

)
P,N(

∂T

∂N

)
S,P

=

(
∂µ

∂S

)
P,N(

∂V

∂N

)
S,P

=

(
∂µ

∂P

)
S,N

You already have studied the four Maxwell relations in much simpler form without considering the chemical

potential.

1. dU = TdS − PdV ; hence,
(
∂T
∂V

)
S

= −
(
∂P
∂S

)
V

2. dH = TdS + V dP ; hence,
(
∂T
∂P

)
S

=
(
∂V
∂S

)
P

3. dA = −SdT − PdV ; hence,
(
∂S
∂V

)
T

=
(
∂P
∂T

)
V

4. dG = −SdT + V dP ; hence,
(
∂S
∂P

)
T

= −
(
∂V
∂T

)
P

The usefulness of these relations is demonstrated in the next section, in which we derive relations between

some of the most commonly measured response functions.

5 Response function

A great deal can be learned about a macroscopic system through its response to various changes in externally

controlled parameters. Important response functions for a PV T system are the specific heats at constant

volume and pressure,
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CV =

(
d̄Q

∂T

)
V

= T

(
∂S

∂T

)
V

CP =

(
d̄Q

∂T

)
P

= T

(
∂S

∂T

)
P

The isothermal and adiabatic compressibilities,

KT = − 1
V

(
∂V
∂P

)
T

KS = − 1
V

(
∂V
∂P

)
S

and the coefficient of thermal expansion

α =
1

V

(
∂V

∂T

)
P,N

Intuitively, we expect the specific heats and compressibilities to be positive and CP > CV ,KT > KS . In this

section we derive relations between these response functions. The intuition that the response functions are

positive will be justified in the following section in which we discuss thermodynamic stability. We begin with

the assumption that the entropy has been expressed in terms of T and V and that the number of particles is

kept fixed. Then

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

T

(
∂S

∂T

)
P

= T

(
∂S

∂T

)
V

+ T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

CP − CV = T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

We now use the Maxwell relations and the chain rule(
∂z

∂x

)
y

(
∂y

∂z

)
x

(
∂x

∂y

)
z

= −1

We get (
∂S

∂V

)
T

=

(
∂P

∂T

)
V

= −
(
∂P

∂V

)
T

(
∂V

∂T

)
P

CP − CV = −T
(
∂P

∂V

)
T

(
∂V

∂T

)2

P

=
TV

KT
α2

In a similar way we obtain a relation between the compressibilities KT and KS . Assume that the volume

V has been obtained as function of S and P.

Then we get

dV =

(
∂V

∂P

)
S

dP +

(
∂V

∂S

)
P

dS

− 1

V

(
∂V

∂P

)
T

= − 1

V

(
∂V

∂P

)
S

− 1

V

(
∂V

∂S

)
P

(
∂S

∂P

)
T

KT −KS = − 1

V

(
∂V

∂S

)
P

(
∂S

∂P

)
T

The Maxwell relation and
(
∂V
∂S

)
P

=
(
∂V
∂T

)
P

(
∂S
∂T

)−1
P

gives

jahir.iitb@gmail.com 12 physicsguide.in



Sk
Ja

hi
ru

dd
in

Sk Jahiruddin Thermodynamics

KT −KS =
TV

CP
α2

Now we have useful relations

CP (KT −KS) = KT (CP − CV ) = TV α2

And
CP
CV

=
KT

KS

6 Conditions for Equilibrium and Stability

We consider two systems in contact with each other. It is intuitively clear that if heat can flow freely between

the two systems and if the volumes of the two systems are not separately fixed, the parameters will evolve

so as to equalize the pressure and temperature of the two systems. These conclusions can easily be obtained

from the principle of maximum entropy. Suppose that the two systems have volumes V1, and V2, energies E1

and E2, and that the number of particles in each, as well as the combined energy and total volume, are fixed.

In equilibrium, the total entropy

S = S1 (E1, V1) + S2 (E2, V2)

must be a maximum. Thus

dS =

(
∂S1
∂E1

)
V1

dE1 +

(
∂S2
∂E2

)
V2

dE2 +

(
∂S1
∂V1

)
E1

dV1 +

(
∂S2
∂V2

)
E2

dV2

=

[(
∂S1
∂E1

)
V1

−
(
∂S2
∂E2

)
V2

]
dE1 +

[(
∂S1
∂V1

)
E1

−
(
∂S2
∂V2

)
E2

]
dV1 = 0

where we have used the constraint E1 + E1 = const. V1 + V2 = const. We have(
∂Sj
∂Ej

)
Vj

=

(
∂Ej
∂Sj

)−1
Vj

=
1

Tj
and

(
∂Sj
∂Vj

)
Ej

=
Pj
Tj

So we get
1

T1
=

1

T2
P1

T1
=
P2

T2

or T1 = T2, P1 = P2, which is the expected result. More generally, one finds that when the conjugate

displacements are unconstrained, all generalized forces of two systems in equilibrium must be equal.

To this point we have required only that the equilibrium state correspond to a stationary state of the

entropy. Requiring this stationary state to be a maximum will provide conditions on the second derivatives

of the entropy. These conditions are local in nature. A stronger (global) condition is that the entropy be a

concave function of the generalized displacements

Some of the most useful stability criteria are obtained from the Gibbs potential rather than from the

entropy and we proceed to consider a small (but macroscopic) system in contact with a much larger reservoir.
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This reservoir is assumed to be so large that fluctuations in the small system do not change the temperature

or pressure of the reservoir, which we denote by T0 and P0. The Gibbs potential is a minimum in equilibrium,

and for the small system we have

G1 (P0, T0) = E1 − T0S1 + P0V1

Suppose now that there is a fluctuation in the entropy and volume of this system. To second order in the

fluctuating quantities,

δG1 = δS1

(
∂E1

∂S1
− T0

)
+ δV1

(
∂E1

∂V1
+ P0

)

+
1

2

[
(δS1)

2

(
∂2E1

∂S2
1

)
+ 2δS1δV1

(
∂2E1

∂S1∂V1

)
+ (δV1)

2

(
∂2E1

∂V 2
1

)]

which must be greater than zero if the state specified by P0, T0 is the state of minimum Gibbs potential.

Since ∂E1/∂S1 = T0 and ∂E1/∂V1 = −P0 we obtain the condition

(δS)2
(
∂2E

∂S2

)
+ 2δSδV

(
∂2E

∂S∂V

)
+ (δV )2

(
∂2E

∂V 2

)
> 0

where we have dropped the subscripts. The fluctuations in the entropy and volume are independent of

each other, and we can guarantee that the above expression is positive if we require that E(S, V ) satisfies the

conditions

∂2E

∂S2
> 0

∂2E

∂V 2
> 0

∂2E

∂S2

∂2E

∂V 2
−
(
∂2E

∂S∂V

)2

> 0

The first inequality reduces to

(
∂T

∂S

)
V

=
T

CV
> 0 or CV > 0

while the second implies

−
(
∂P

∂V

)
S

=
1

V KS
> 0 or KS > 0

and the final inequality yields

T

V KSCV
>

(
∂T

∂V

)2

S
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These inequalities are special cases of Le Chatelier’s principle, which states that if a system is in equilib-

rium, any spontaneous changes in its parameters will bring about processes that tend to restore the system

to equilibrium. In our situation such spontaneous processes raise the Gibbs potential. Other stability criteria

can be obtained by using one of the other thermodynamic potentials

7 Thermodynamics of Phase Transitions

A typical phase diagram for a one-component PVT system looks like next figure

Figure 4: Phase diagram of a simple one-component PV T system.

The solid lines separate the P−T plane into regions in which different phases are the stable thermodynamic

states. As the system passes through one of these lines, called coexistence curves, a phase transition occurs,

generally accompanied by the absorption or liberation of latent heat. In the figure there are two special

points, the triple point Pt, Tt, and the critical point, Pc, Tc. At the critical point the properties of the fluid

and vapor phase become identical and much of our study of phase transitions in later chapters will focus on

the region of the phase diagram around this point. We note that the properties of the system vary smoothly

along any curve which does not cross a coexistence curve. Thus, it is possible to pass continuously from the

vapor to the liquid phase by taking the system to high enough temperature, increasing the pressure, and

then lowering the temperature again. It is not possible to avoid the liquid-solid coexistence curve this curve

extends to P →∞ T →∞

We consider a single-component PVT system on either side of the liquid- gas or liquid-solid coexistence

curve. The coexisting phases may be thought of as two equilibrium systems in contact with each other. We

therefore have
T1 = T2

P1 = P2

µ1 = µ2

where the subscripts 1 and 2 refer to the two phases. From the relation G(P, T,N) = µN we get

g1(T, P ) = g2(T, P )

where g1, and g2 are the Gibbs potential per particle in phases 1 and 2, respectively. The above relation

must hold along the entire coexistence curve and hence
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dg1 = −s1dT + v1dP = dg2 = −s2dT + v2dP

for differentials (dT, dP ) along the coexistence curve. Thus

(
dP

dT

)
coex

=
s1 − s2
v1 − v2

=
L12

T (v1 − v2)
where L12 is the latent heat per particle needed to transform the system from phase 2 to phase 1. The above

is known as the Clausius-Clapeyron equation. As a simple example, consider a transition from liquid to vapor

with v1 � v2 and with v1 = kBT/P. Then
dP

dT
≈ PL12

kBT 2

As a final topic we now briefly discuss the Gibbs phase rule. This rule allows one to limit the topology

of a phase diagram on the basis of some very general considerations. Consider first a single-component PV T

system with a

phase diagram as shown in Previous Figure For two-phase coexistence the chemical potential µ(P, T )

must be the same in the two phases, yielding a curve in the P − T plane. Similarly, three-phase coexistence

implies that

µ1(P, T ) = µ2(P, T ) = µ3(P, T )

which, in general, will have a solution only at an isolated point, the triple point. Four-phase coexistence

is ruled out unless there are hidden fields separate from the temperature and pressure.

One can also see that the critical point Pc, Tc will be an isolated point for a PV T system. At the critical

point the liquid and vapor densities, or specific volumes, are equal. This condition yields a second equation,

v1 (Pc, Tc) =
∂g1
∂P

∣∣∣∣
Pc,Tc

= v2 (Pc, Tc) =
∂g2
∂P

∣∣∣∣
Pc,Tc

which together with µ1 (Pc, Tc) = µ2 (Pc, Tc) determines a unique point in the P − T plane.

In a multicomponent system the situation is more complicated. We take as thermodynamic variables P, T,

and cij , i = 1, 2, . . . , r, where cij is the mole fraction of constituent i in phase j of an r -component system.

Suppose that there are s coexisting phases. Since

r∑
i=1

cij = 1

there are s(r − 1) + 2 remaining independent variables. Equating the chemical potentials for the r

components gives r(s − 1) equations for these variables. If a solution is to exist, we must have at least as

many variables as equations, that is,

s(r − 1) + 2 ≥ r(s− 1)
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or

s ≤ r + 2

Therefore, at most, r + 2 phases can coexist in a mixture of r constituents.
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